INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 1903-1918

Analysis of indentation cracking in piezoceramics
L.Z. Jiang, C.T. Sun *

School of Aeronautics and Astronautics, Grissom Hall 325, Purdue University, West Lafayette, IN 47907-1282, USA
Received 16 August 1999; in revised form 6 March 2000

Abstract

The electric field can significantly affect the growth of Vickers indentation cracks in piezoceramics. In this study, the
wedge effect caused by inelastic deformation was proposed to explain the phenomenon. An approximate analytic so-
lution for a half penny-shaped crack in a piezoceramic half space was derived from modifying full penny-shaped crack
solution according to proper boundary conditions on the free surface of the indented piezoceramic specimen. The
solution in conjunction with the mechanical strain energy release rate was used to quantitatively account for the effect of
electric field on crack length produced by Vickers indentations with various indentation forces. The proposed model
was able to explain the effects of electric field on crack growth in piezoceramics. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Piezoceramics are commonly used for actuators. They are very brittle and are susceptible to fracture. In
operation, piezoceramic actuators are subjected to both mechanical and electrical loads. Recently, the
behavior of cracks and fracture toughness in piezoceramics under combined mechanical and electrical loads
had been a subject of research interest (Deeg, 1980; McMeeking, 1990; Pak, 1990; Sosa and Pak, 1990;
Sosa, 1992; Suo et al., 1992; Park and Sun, 1995a,b).

The indentation technique has been used to characterize material properties and fracture toughness of
brittle materials (Chiang et al., 1982; Tsai, 1984; Cook and Pharr, 1990; Anstis et al., 1981) because it is
simple and can be performed on small specimens. Sridhar et al. (1999) employed the indentation technique
to characterize piezoelectric material properties using different electric boundary conditions for the ind-
enter. Giannakopoulos and Suresh (1999) developed a theory for axisymmetric indentation of piezoelectric
materials based on which the experimental results by Ramamurty et al. (1999) were explained. Chen et al.
(1999) analyzed the elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric
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half space. Many researchers (Okazaki, 1984; Tobin and Pak, 1993; Cao and Evans, 1995; Sun and Park,
1995) have employed the Vickers indentation technique to characterize fracture toughness for piezoce-
ramics. It has been observed that the electric field has a significant effect on the apparent toughness of
piezoceramics. Specifically, a positive electric field (in the poling direction) decreases the apparent tough-
ness while a negative electric field increases the apparent toughness. This trend is identical to the results by
Park and Sun (1995b) using the compact tension specimen. Park and Sun (1995b) proposed the use of the
mechanical strain energy release rate as a measure of fracture toughness and were able to account for the
effect of electric field on fracture toughness. Jiang and Sun (1999) employed the fracture parameter to
successfully characterize the fatigue behavior of piezoceramics.

The crack growth mechanism for a crack produced by the Vickers indentation is quite different from that
in the conventional fracture test with compact tension specimens. For Vickers indentation, inelastic de-
formation under the indenter would give rise to tensile opening stress at the crack front (Yoffe, 1982). These
tensile stresses would propagate the crack to its final dimension. To employ the mechanical strain energy
release rate to predict the growth of a Vickers indentation induced crack in the presence of electric fields,
these crack front residual stresses must be determined.

It is known that a half penny-shaped crack is formed after indentation in some brittle materi-
als (Chandrasekar and Chaudhri, 1993) and in piezoceramics (Sun and Park, 1995). Fig. 1 shows the
surface view of the cracks produced by Vickers indentation and the half penny-shaped crack beneath the
surface in PZT-4. It is noted that the crack front forms a perfect half circle. No crack bridging was ob-
served.

Before presenting the solution for a half penny-shaped crack embedded in piezoelectric media, a re-
view of relevant literature is appropriate. Wang (1992) investigated a flat elliptical crack in a piezoelec-
tric material by utilizing the eigenstrain approach. His solution involves the evaluation of residue of
generalized integrals but no explicit results are available. Wang and Huang (1995) studied an elliptical
crack in transversely isotropic media under a very specific loading condition, i.e., uniform pressure and
uniform charge on the insulated crack surface using the potential function approach. It is noted from their
solution that the stress intensity factor depends not only on the applied uniform pressure, but on the
uniform charge as well, while the electric displacement intensity factor depends on both charge and pres-
sure. This appears inconsistent with the existing two-dimensional (Pak, 1990, 1992; Sosa, 1992; Suo et al.,
1992) and three-dimensional (Sosa and Pak, 1990) solutions. In addition, their solution cannot be used to
obtain the solution for point force and point charge applied on the crack surface that is essential to the
Vickers indentation problem. Huang (1997) considered a similar problem as Wang (1992) using an ei-
genstrain formulation and Cauchy’s residue theorem, but no closed form solution was reported. Kogan
et al. (1996) considered the conductive boundary condition and obtained the stress intensity factor
and near tip solution. However, in the experimental results conducted by Sun and Park (1995), Vickers
indented specimen was immersed in silicon oil and the crack surface was covered by oil. Due to the several
orders of magnitude difference between the values of the dielectric constants of silicon oil and PZT, it is
believed that the impermeable crack surface boundary condition is a good description of the testing con-
dition.

In this study, the electro-elastic solution for a penny-shaped crack under arbitrarily axisymmetric
loading conditions was obtained by using the Hankel transform and solving dual integral equations. The
point load solution was easily obtained from the general solution by taking limiting process. The effect of
the inelastic deformation was represented by a double force applied at the center of the penny-shaped crack.
For a half penny-shaped crack, a correction factor was added to account for the free surface condition of
the half space. Such an approach was employed by Smith et al. (1967a,b) and Kassir and Sih (1968) for a
similar problem in elastic solids. The approximation was then used to calculate the mechanical strain energy
release rate to predict Vickers indentation induced crack lengths for different indentation loads and electric
fields.
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Fig. 1. (a) Vickers indentation induced crack (Sun and Park, 1995) and (b) typical indentation induced crack beneath the surface (Sun
and Park, 1995).

2. Axisymmetric piezoelectric body

In the absence of body forces, the equilibrium equations for an axisymmetric piezoelectric body under
axisymmetric loading can be expressed as
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where o, t and D are the normal stress, shear stress, and electric displacement, respectively, and r, 6 and z
are the radial, circumferential and axial coordinates, respectively.

Assume that the z-direction is parallel to the poling direction. Most man-made piezoelectric materials are
transversely isotropic and possess the following constitutive relations (Tiersten, 1969):

(7 cn ¢ c3 0 Vi 0 ey
oo | _ [c2 cn ez 0 Vol |0 en|])E 3)
(o ¢z c3 e 0 Vaz 0 es||E )’
Ty 0 0 0 Ca4 | Vrz €is 0
’yrr
Dr 0 0 0 €15 Yoo &11 0 Er
= + : 4
{Dz } {631 e ey O } V., 0 &3 E, (4)
Vrz

where ¢;;, e;; and ¢; are elastic, piezoelectric and dielectric constants, respectively, and strains and electric
fields are given by
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in which u and w are displacements in r and z directions, respectively, and ¢ is electric potential.
Eliminating stresses and electric displacements from Egs. (1) and (2) using Egs. (3)—(5) leads to
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The Hankel transform pair is defined by
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where J; is Bessel’s function of the first kind of order k. Applying the Hankel transform to Eq. (6) with
k=1 for u, and k = 0 for w and ¢, we obtain
cati’ — en & — E(cry + ca)W — Eers + 631)5/ =0,
(c13 + caa) & + c3W' — caa&W + e —Eeisp =0, (8)
(€15 + e31) U + ez’ — e15E7W — 8336// + 811526 =0

in which a prime indicates the derivative with respect to z. It is known that when z — oo, @, w and ¢ decay
to zero. Following Sneddon and Lowengrub (1968), Shindo et al. (1990), and Lee and Jiang (1994), we
assume the solution
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Substituting the above equations into Eq. (8) and considering non-trivial solutions for U, W and b, we
obtain the characteristic equation in #
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Since these coefficients are real, the above bi-cubic equation, in general, has six roots, say (=7,
+n, and =+ 5;), where 5, is a real number and 5, and #; are, in general, a pair of complex conjugates.
Without loss of generality, we assume that #, and the real parts of n, and #, are positive. For the upper half
space (z = 0), we take the solutions associated with #,, 17,, 7; and the corresponding characteristic functions

£i(¢) (i =1,2,3). Subsequently, i(¢), w(&), and ¢ (&) are expressed in terms of £;(¢), from which the inverse
transform yields
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Using Egs. (3) and (4), we obtained stress components and electric displacement as

3

ralriz) = Y lens = canf, — exnz) [ EA(E)e (e d

i=1

3 00
T(r,z) = Z(_C44ﬁi — Caal];%; — 615%)/ gfi(é)e—m&]] (&r)dg, (14)
0

i=1

Di(r,z) =) (e — e + 833’%%)/() Efi(&)e ey (Er) dE.

i=1

w |l

The unknown functions f;(¢) (i =1,2,3) are to be determined by using boundary conditions.

3. Solution for penny-shaped crack

Consider a penny-shaped crack of radius ¢ lying on the plane z = 0 in an infinite piezoelectric body (Fig.
2). The crack surfaces are subjected to an axisymmetric internal pressure p(r) and charge ¢(r). As a result of
the symmetry, shear stress 7,. vanishes in the plane z = 0. Thus, from Eq. (14),

3
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i=1

Using Eq. (15), f; can be expressed in terms of f; and f,. Consequently, Egs. (11) and (14) can be rewritten
in terms of f; and f;. Subsequently, the solutions at z = 0 are obtained as

Fig. 2. Coordinates for penny-shaped crack. The poling direction is parallel to the z-axis.
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Dual integral equations of this type have been considered by Titchmarsh (1937) and Busbridge (1938). The
solution can be expressed in the form
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For given p(p) and ¢(p), functions f; can be obtained from Eq. (21). If uniform pressure po and surface
charge ¢, are applied over the areas of radii a < ¢ and b < ¢, respectively, the crack surface displacement,
electric potential, crack tip stress, and electric displacement are obtained from Eq. (21) and then Eq. (16) as
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Eq. (25) is consistent with those obtained by Sosa and Pak (1990) and Park and Sun (1995a,b).

The solution for a point force Py and a uniform charge ¢, over the entire crack surface can be obtained
from Eqgs. (22)—(25) by using the limiting procedure, i.e., 11m p()Tca = Py. For example, the solution for crack
surface displacement is

w(r,0) = _0{(/31 + Bsd)tiy + (By + By o)t 1/ 1 = (r/c)
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The stress and electric fields near the crack tip are of interest and can be derived from the solution given
by Egs. (22)—(25). Let the origin of a local coordinate R be located at the crack front as shown in Fig. 2.
Then,

R=r—c=pc—c. (27)

The near tip fields can be obtained using the standard procedure. For a point force and a point charge,
the near tip singular stress and electric displacement are obtained as
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the stress and electric displacement intensity factors are obtained as
c c .
K1 = 2py \/;, Kp = 2q0\/;, for uniform py and gy, (30)

and
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P 0

W7 Kp = (110—)03/27 for a point force and charge. (31)

It is noted that K depends only on the mechanical load, while Kp depends only on the electric load.

K =

4. Semicircular surface crack

The crack induced by Vickers indentation (Fig. 3) is modeled as a semicircular surface crack in a half-
space as shown in Fig. 4. The only difference between this problem and the penny-shaped crack problem
discussed in the previous section is the additional traction free boundary condition on the free surface (the
x—z plane, Fig. 4). For homogeneous isotropic elastic solids, the stress intensity factor K; for the semi-
circular surface crack is given by Cherepanov (1979) as

Ki = k(0)K;, (32)
where
2
x(e):1+o.2("_29> : (33)
s
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Z
| 2C |
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5

Fig. 3. Dimensions of crack formed by a Vickers indenter.
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Fig. 4. Hllustration of wedge effect due to indentation.

and K; is the stress intensity factor for the infinite medium with a penny-shaped crack. It is noted that the
stress intensity factor varies along the crack front of the semicircular surface crack and assumes the
maximum value of 1.2K} at the free surface, i.e., 0 =0, 7.

Since most piezoceramics are transversely isotropic and the crack surface normal to the z-axis is assumed
to be the isotropic plane, we adopt the same correction factor x(0) given by Eq. (33) to derive the stress
intensity factor for the present problem. Thus, for a point force, Py applied in the z-direction at
x =y =z =0 in the semicircular surface crack, the stress intensity factor is

2P

K = 0 3
o )(nc)/

(34)

Note that the point force for the corresponding penny-shaped crack problem is 2Py, used in Eq. (34). In the
problem of the penny-shaped crack, the electric displacement Dy is zero everywhere. Thus, the electric
boundary condition at the free surface of the half space problem is satisfied by the penny-shaped crack
solution for electric displacement. In view of this, there is no need to correct the electric displacement
intensity factor. Thus, for the semicircular surface crack in a half space of piezoceramics with uniform
charge gy applied on the crack surface, we have

Kp = 2qo\/c/m. (35)

Using the principle of superposition, the expression given by Eq. (35) is also valid for the problem, where
the charge is applied remotely (i.e., at a large distance from the crack). Such a boundary condition can be
replaced with an equivalent boundary condition in terms of the applied electric field £2°. After the con-
stitutive relations Eq. (3) and Eq. (30) are used, the electric displacement intensity factor can be related to
the far electric field as

Kp =2EZ g/ ¢/, (36)
where

2 b )
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For PZT-4, yz = 1.15 x 107® CmV~!. The first term represents the dielectric effect, while the second term
represents the piezoelectric coupling effects.
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5. A wedge model for indentation cracks

For unpoled isotropic and homogeneous materials, explicit formulas for the stress intensity factor of a
radial crack produced by a Vickers sharp indenter have been empirically derived by many researchers
(Chiang et al., 1982; Yoffe, 1982; Anstis et al., 1981). The stress intensity factor Kj can be expressed in terms
of material constants, indentation load P, and induced crack length ¢, as (Anstis et al., 1981)

y 1/2
m:00m<ﬁ> Pc32,

_ Psin(a/2)
D2

(38)
H

where Y and H represent Young’s modulus and hardness, respectively, D is the half diagonal of the in-
dentation pyramid and o is the apex angle of the Vickers diamond indenter, which is normally 136°.

The plastic wedge induced by indentation prevents crack surfaces from closing after removal of the
indenter, and, thus, causes tensile residual stresses near the crack tip. This wedge action may be represented
by a pair of point forces P, situated at the “center” (x = y = z = 0) of the crack. The magnitude of P,
depends on the indentation force and the electric field.

Since the Vickers indentation formula given by Eq. (38) relates the stress intensity factor Kj and the
crack length ¢ that is observed on the free surface of the half space, the stress intensity factor K; should be
interpreted as the value at # = O(or 7). This formula is assumed to be valid in the absence of electric fields.
Thus, for a given indentation force P, we assume that the point force P; gives the same stress intensity
factor as the indentation force. From Egs. (34) and (38), the stress intensity factor induced by a point force
Py applied at the “center” of the crack is given by Eq. (34). A wedging force Py is equivalent to P if the
corresponding Ki’s are equal. As a result, we have

Y\, s Py
0016<ﬁ) PCO —KOW, (39)

where ¢ is the indentation induced crack length in the absence of electric fields, and ko = k(0 = 0) = 1.2.
From Eq. (39), the equivalent wedging force in the absence of electric fields is established as

0.089 / Y\
P = —] P 4
0 Ko (H) (40)

It is assumed that the wedge is piezoelectric. For simplicity, we assume that the inelastic region can be
represented by a one-dimensional piezoelectric rod element. If a positive electric field is applied, the rep-
resentative piezoelectric rod would elongate, and wedging force develops. In contrast, if a high negative
field is applied to the rod, 180° domain switching would take place since voltage on the crack surface is very
high and the length of the rod is very small.

It is not easy to predict when and how completely domain switching would occur in the wedge. A simple
empirical model is derived based on the following observations and assumptions:

(1) It is assumed that the domain switching for material in the wedge region under the indenter occurs
when negative electric fields are applied. The assumption is made based on the observation that the electric
field across the crack surfaces near the crack tip exceed the coercive field.

(2) Based on the experimental observation (Lynch, 1996; Schaufele and Hardtl, 1996), it is assumed that
the magnitude of piezoelectric constant ¢33 after domain switching could reduce since 180° domain
switching might not be fully completed.
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(3) It is observed that under higher compressive stresses, the 180° domain switching could occur more
easily (Lynch, 1996). It is expected that the higher indentation load produces a greater compressive stress in
the rod (wedge). Based on limited experimental results, it is observed that piezoelectric constants after
domain switching may vary with different states of stress. As a result, the greater the indentation load, the
smaller the reduction in the piezoelectric constant.

In light of the above observations and assumptions, the piezoelectric constant modified by a reduction
factor, tpiesodss, |tpiero| < 1, is adopted.

Using the crack surface displacement and electric potential given by Egs. (22) and (23) for the penny-
shaped crack problem together with the correction factor ky, the crack surface displacement and electric
potential at the “center” of the semicircular surface crack is obtained as

210 P, 2
w(0,0) = %{(ﬂl + Bsd)ti + (B + B3d2)tar } +% (B + BsA)tia + (By + B3d2) 1}, (41)
and
210 P,y 2q()C
¢(0,0) = — ~{(n +mdi)m + (2 + 9342t} + == {01 + 934002 + (72 + 7342) 12}, (42)

respectively, where P, is the equivalent point wedging force applied at the “center” of the semicircular
crack. Elongation of the rod due to an electric field applied to the rod is

AL = _Ocpiezod33A¢7 (43)

where ds3 is the original piezoelectric constant, oy, is the reduction factor associated with the material
property change, and A¢ is the electric potential difference given by Eq. (42). It is noted that the contri-
bution to A¢ from wedging force is smaller than that from the applied charge, and, as an approximation,
only the second term in Eq. (42) is retained. Meanwhile, deformation in the rod due to an applied charge is
secondary and neglected. As a result, the change of crack opening displacement due to electric field is equal
to elongation of the rod that is produced by the electric field.

W(O’ O)|Pl):Pl)sq():ql)aC:C - W(O’ 0)|P():P(‘)’<,qu:0,l’:co = AL. (44>
Substituting Eqgs. (41) and (43) into the above equation and solving for P,, we have
PO - P(;) (5) - O‘piezochqua (45)
0
where

_ O+ A0t + (72 + 7342) b
Ko{(B1 + Boadi)tis + (Br + By da)tar }
In Eq. (45), the applied crack surface charge ¢ can also be interpreted as a remotely applied charge that can

be represented by an applied electric field E.. In terms of the applied electric field E., we can rewrite Eq. (45)
as

kp

(46)

P() = Pé) (i) — OCpieZOkECZEZ, (47)
Co
where
kg = kpyg, (48)

in which y is given by Eq. (37).
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Once the wedging force P, is determined by using Eq. (47), the stress intensity factor for the semicircular
crack is obtained from Eq. (34) as

K = 20 <P§ (5) - ocpiezokEczEz> . (49)

(nc)*? o

For the indentation crack problem, the stress intensity factor Kj is for 6 = 0°. Thus, «(0) = 1.2.

6. Discussion

The mechanical strain energy release rate proposed by Park and Sun (1995b) includes only mechanical
energy released as the crack extends. For Mode I loading, the mechanical strain energy release rate can be
obtained using Irwin’s crack closure method (Irwin, 1962). For PZT-4, we have

GY' =1(1.75 x 107K} +2.21 x 10°K;Kp) (Nm™"), (50)

where K; is given by Eq. (49) and Kp, by Eq. (36). Using the crack lengths at £° = 0 obtained from the
Vickers indentation tests, Sun and Park (1995) obtained the critical mechanical strain energy release rates
G = 3.68 and 4.63 Nm' for indentation loads P = 9.8 N and 49 N, respectively. In terms of the critical
G and a given indentation load, the relation between crack length and electric field can be determined
iteratively using Eq. (50). The determination of piezoelectric constant reduction factor oy, still remains a
challenging task. One approach is to choose two data points from each positive and negative electric field to
determine this parameter.

For positive electric fields, we take oo = 0, because it is assumed that there is no domain switching,
and the wedge would elongate the same amount as the surrounding piezoelectric medium, and no addi-
tional wedging force due to the electrical field would occur.

For the application of negative electric fields, it is assumed that the 180° domain switching would occur
in the wedge, and elongation of the wedge would thus result. It has been observed experimentally (Lynch,
1996) that stress could greatly affect domain switching. As a result, different reduction factors associated
with indentation loads 9.8 and 49 N were selected to reflect the fact that greater indentation loads would
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Fig. 5. Prediction of crack length for P = 9.8 N.
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Fig. 6. Prediction of crack length for P =49 N.

produce a higher degree of completion of domain switching. Using the aforementioned approach, we
obtain e, = —0.2 and —0.8 for indentation forces P = 9.8 and 49 N, respectively. The negative sign
indicates the effect of 180° domain switching. Using these factors, the comparisons between simulation and
the experimental results are plotted in Figs. 5 and 6.

Finally, it is noted that a positive electric field through coupling with the tensile residual stress at the
crack front would produce a higher driving force G that would produce a greater crack growth. In
contrast, when a negative electric field is applied, due to the wedging effect, tensile stresses at the crack front
increase and the crack would still grow to a certain amount.

7. Conclusion

An analytical solution for a penny-shaped crack in an infinite piezoelectric body was derived using
Hankel integral transform, from which an approximate solution for indentation cracks was obtained. The
concept of a plastic wedge produced by indentation in conjunction with the mechanical strain energy re-
lease rate was found able to interpret the electric field effects on indention crack growth. The significance of
the model is its simplicity.
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