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Abstract

The electric ®eld can signi®cantly a�ect the growth of Vickers indentation cracks in piezoceramics. In this study, the

wedge e�ect caused by inelastic deformation was proposed to explain the phenomenon. An approximate analytic so-

lution for a half penny-shaped crack in a piezoceramic half space was derived from modifying full penny-shaped crack

solution according to proper boundary conditions on the free surface of the indented piezoceramic specimen. The

solution in conjunction with the mechanical strain energy release rate was used to quantitatively account for the e�ect of

electric ®eld on crack length produced by Vickers indentations with various indentation forces. The proposed model

was able to explain the e�ects of electric ®eld on crack growth in piezoceramics. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Piezoceramics are commonly used for actuators. They are very brittle and are susceptible to fracture. In
operation, piezoceramic actuators are subjected to both mechanical and electrical loads. Recently, the
behavior of cracks and fracture toughness in piezoceramics under combined mechanical and electrical loads
had been a subject of research interest (Deeg, 1980; McMeeking, 1990; Pak, 1990; Sosa and Pak, 1990;
Sosa, 1992; Suo et al., 1992; Park and Sun, 1995a,b).

The indentation technique has been used to characterize material properties and fracture toughness of
brittle materials (Chiang et al., 1982; Tsai, 1984; Cook and Pharr, 1990; Anstis et al., 1981) because it is
simple and can be performed on small specimens. Sridhar et al. (1999) employed the indentation technique
to characterize piezoelectric material properties using di�erent electric boundary conditions for the ind-
enter. Giannakopoulos and Suresh (1999) developed a theory for axisymmetric indentation of piezoelectric
materials based on which the experimental results by Ramamurty et al. (1999) were explained. Chen et al.
(1999) analyzed the elasto-electric ®eld for a rigid conical punch on a transversely isotropic piezoelectric
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half space. Many researchers (Okazaki, 1984; Tobin and Pak, 1993; Cao and Evans, 1995; Sun and Park,
1995) have employed the Vickers indentation technique to characterize fracture toughness for piezoce-
ramics. It has been observed that the electric ®eld has a signi®cant e�ect on the apparent toughness of
piezoceramics. Speci®cally, a positive electric ®eld (in the poling direction) decreases the apparent tough-
ness while a negative electric ®eld increases the apparent toughness. This trend is identical to the results by
Park and Sun (1995b) using the compact tension specimen. Park and Sun (1995b) proposed the use of the
mechanical strain energy release rate as a measure of fracture toughness and were able to account for the
e�ect of electric ®eld on fracture toughness. Jiang and Sun (1999) employed the fracture parameter to
successfully characterize the fatigue behavior of piezoceramics.

The crack growth mechanism for a crack produced by the Vickers indentation is quite di�erent from that
in the conventional fracture test with compact tension specimens. For Vickers indentation, inelastic de-
formation under the indenter would give rise to tensile opening stress at the crack front (Yo�e, 1982). These
tensile stresses would propagate the crack to its ®nal dimension. To employ the mechanical strain energy
release rate to predict the growth of a Vickers indentation induced crack in the presence of electric ®elds,
these crack front residual stresses must be determined.

It is known that a half penny-shaped crack is formed after indentation in some brittle materi-
als (Chandrasekar and Chaudhri, 1993) and in piezoceramics (Sun and Park, 1995). Fig. 1 shows the
surface view of the cracks produced by Vickers indentation and the half penny-shaped crack beneath the
surface in PZT-4. It is noted that the crack front forms a perfect half circle. No crack bridging was ob-
served.

Before presenting the solution for a half penny-shaped crack embedded in piezoelectric media, a re-
view of relevant literature is appropriate. Wang (1992) investigated a ¯at elliptical crack in a piezoelec-
tric material by utilizing the eigenstrain approach. His solution involves the evaluation of residue of
generalized integrals but no explicit results are available. Wang and Huang (1995) studied an elliptical
crack in transversely isotropic media under a very speci®c loading condition, i.e., uniform pressure and
uniform charge on the insulated crack surface using the potential function approach. It is noted from their
solution that the stress intensity factor depends not only on the applied uniform pressure, but on the
uniform charge as well, while the electric displacement intensity factor depends on both charge and pres-
sure. This appears inconsistent with the existing two-dimensional (Pak, 1990, 1992; Sosa, 1992; Suo et al.,
1992) and three-dimensional (Sosa and Pak, 1990) solutions. In addition, their solution cannot be used to
obtain the solution for point force and point charge applied on the crack surface that is essential to the
Vickers indentation problem. Huang (1997) considered a similar problem as Wang (1992) using an ei-
genstrain formulation and CauchyÕs residue theorem, but no closed form solution was reported. Kogan
et al. (1996) considered the conductive boundary condition and obtained the stress intensity factor
and near tip solution. However, in the experimental results conducted by Sun and Park (1995), Vickers
indented specimen was immersed in silicon oil and the crack surface was covered by oil. Due to the several
orders of magnitude di�erence between the values of the dielectric constants of silicon oil and PZT, it is
believed that the impermeable crack surface boundary condition is a good description of the testing con-
dition.

In this study, the electro-elastic solution for a penny-shaped crack under arbitrarily axisymmetric
loading conditions was obtained by using the Hankel transform and solving dual integral equations. The
point load solution was easily obtained from the general solution by taking limiting process. The e�ect of
the inelastic deformation was represented by a double force applied at the center of the penny-shaped crack.
For a half penny-shaped crack, a correction factor was added to account for the free surface condition of
the half space. Such an approach was employed by Smith et al. (1967a,b) and Kassir and Sih (1968) for a
similar problem in elastic solids. The approximation was then used to calculate the mechanical strain energy
release rate to predict Vickers indentation induced crack lengths for di�erent indentation loads and electric
®elds.
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2. Axisymmetric piezoelectric body

In the absence of body forces, the equilibrium equations for an axisymmetric piezoelectric body under
axisymmetric loading can be expressed as

orrr
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� osrz

oz
� rrr ÿ rhh

r
� 0;

osrz
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� orzz

oz
� srz

r
� 0;

�1�

and the Gauss law is

o
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�rDr� � r

o
oz
�Dz� � 0; �2�

Fig. 1. (a) Vickers indentation induced crack (Sun and Park, 1995) and (b) typical indentation induced crack beneath the surface (Sun

and Park, 1995).
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where r, s and D are the normal stress, shear stress, and electric displacement, respectively, and r, h and z
are the radial, circumferential and axial coordinates, respectively.

Assume that the z-direction is parallel to the poling direction. Most man-made piezoelectric materials are
transversely isotropic and possess the following constitutive relations (Tiersten, 1969):
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where cij, eij and eij are elastic, piezoelectric and dielectric constants, respectively, and strains and electric
®elds are given by

crr �
ou
or
; chh �

u
r
; czz �

ow
oz
; crz �

ou
oz
� ow

or
;

Er � ÿ o/
or

and Ez � ÿ o/
oz
;

�5�

in which u and w are displacements in r and z directions, respectively, and / is electric potential.
Eliminating stresses and electric displacements from Eqs. (1) and (2) using Eqs. (3)±(5) leads to
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The Hankel transform pair is de®ned by

F �n; z� � R1
0

F �r; z�rJk�nr�dr;

F �r; z� � R1
0

F �n; z�nJk�nr�dn;

����� �7�

where Jk is BesselÕs function of the ®rst kind of order k. Applying the Hankel transform to Eq. (6) with
k � 1 for u, and k � 0 for w and /, we obtain

c44u00 ÿ c11n
2uÿ n�c13 � c44�w0 ÿ n�e15 � e31�/0 � 0;

�c13 � c44�nu0 � c33w00 ÿ c44n
2w� e33/

00 ÿ n2e15/ � 0;

�e15 � e31�nu0 � e33w00 ÿ e15n
2wÿ e33/

00 � e11n
2/ � 0

�8�

in which a prime indicates the derivative with respect to z. It is known that when z!1, u, w and / decay
to zero. Following Sneddon and Lowengrub (1968), Shindo et al. (1990), and Lee and Jiang (1994), we
assume the solution
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u�n; z� � û�n�eÿgnz;

w�n; z� � ŵ�n�eÿgnz;

/�n; z� � /̂�n�eÿgnz:

�9�

Substituting the above equations into Eq. (8) and considering non-trivial solutions for Û , Ŵ and /̂, we
obtain the characteristic equation in g

g6 � B1g
4 � B2g

2 � B3 � 0; �10�
where

B1 � e33C1 � e33C2 � c33C3
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�11�

Since these coe�cients are real, the above bi-cubic equation, in general, has six roots, say ��g1,
�g2 and � g3�, where g1 is a real number and g2 and g3 are, in general, a pair of complex conjugates.
Without loss of generality, we assume that g1 and the real parts of g2 and g3 are positive. For the upper half
space �z P 0�, we take the solutions associated with g1, g2, g3 and the corresponding characteristic functions
fi�n� �i � 1; 2; 3�. Subsequently, û�n�, ŵ�n�, and /̂�n� are expressed in terms of fi(n), from which the inverse
transform yields
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where
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Using Eqs. (3) and (4), we obtained stress components and electric displacement as
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The unknown functions fi�n� �i � 1; 2; 3� are to be determined by using boundary conditions.

3. Solution for penny-shaped crack

Consider a penny-shaped crack of radius c lying on the plane z � 0 in an in®nite piezoelectric body (Fig.
2). The crack surfaces are subjected to an axisymmetric internal pressure p�r� and charge q�r�. As a result of
the symmetry, shear stress srz vanishes in the plane z � 0. Thus, from Eq. (14),

X3

i�1

�ÿc44bi ÿ c44giai ÿ e15ci�fi � 0: �15�

Using Eq. (15), f3 can be expressed in terms of f1 and f2. Consequently, Eqs. (11) and (14) can be rewritten
in terms of f1 and f2. Subsequently, the solutions at z � 0 are obtained as

Fig. 2. Coordinates for penny-shaped crack. The poling direction is parallel to the z-axis.
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Applying the crack surface and symmetry conditions at z � 0, i.e.,
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and substituting Eq. (16) into Eq. (18), we obtain two pairs of integral equations (i � 1 and 2)Z 1
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Dual integral equations of this type have been considered by Titchmarsh (1937) and Busbridge (1938). The
solution can be expressed in the form

fi�1� � 2

p
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0

l sin�l1�dl
Z 1

0

q�ti1p�q� � ti2q�q���������������
1ÿ q2

p dq: �21�

For given p�q� and q�q�, functions fi can be obtained from Eq. (21). If uniform pressure p0 and surface
charge q0 are applied over the areas of radii a6 c and b6 c, respectively, the crack surface displacement,
electric potential, crack tip stress, and electric displacement are obtained from Eq. (21) and then Eq. (16) as
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Eq. (25) is consistent with those obtained by Sosa and Pak (1990) and Park and Sun (1995a,b).
The solution for a point force P0 and a uniform charge q0 over the entire crack surface can be obtained

from Eqs. (22)±(25) by using the limiting procedure, i.e., lim
a!0

p0pa2 � P0. For example, the solution for crack
surface displacement is
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The stress and electric ®elds near the crack tip are of interest and can be derived from the solution given
by Eqs. (22)±(25). Let the origin of a local coordinate R be located at the crack front as shown in Fig. 2.
Then,

R � r ÿ c � qcÿ c: �27�
The near tip ®elds can be obtained using the standard procedure. For a point force and a point charge,

the near tip singular stress and electric displacement are obtained as
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Using the conventional de®nitions, i.e.,

KI � lim
R!0

���������
2pR
p

rzz�R; 0�;
KD � lim
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���������
2pR
p
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the stress and electric displacement intensity factors are obtained as
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c
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r
; for uniform p0 and q0; �30�

and
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KI � P0

�pc�3=2
; KD � Q0

�pc�3=2
; for a point force and charge: �31�

It is noted that KI depends only on the mechanical load, while KD depends only on the electric load.

4. Semicircular surface crack

The crack induced by Vickers indentation (Fig. 3) is modeled as a semicircular surface crack in a half-
space as shown in Fig. 4. The only di�erence between this problem and the penny-shaped crack problem
discussed in the previous section is the additional traction free boundary condition on the free surface (the
x±z plane, Fig. 4). For homogeneous isotropic elastic solids, the stress intensity factor KI for the semi-
circular surface crack is given by Cherepanov (1979) as

KI � j�h�K�I ; �32�
where

j�h� � 1� 0:2
pÿ 2h

p

� �2

; �33�

Fig. 3. Dimensions of crack formed by a Vickers indenter.
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and K�I is the stress intensity factor for the in®nite medium with a penny-shaped crack. It is noted that the
stress intensity factor varies along the crack front of the semicircular surface crack and assumes the
maximum value of 1.2K�I at the free surface, i.e., h � 0, p.

Since most piezoceramics are transversely isotropic and the crack surface normal to the z-axis is assumed
to be the isotropic plane, we adopt the same correction factor j�h� given by Eq. (33) to derive the stress
intensity factor for the present problem. Thus, for a point force, P0 applied in the z-direction at
x � y � z � 0 in the semicircular surface crack, the stress intensity factor is

KI � j�h� 2P0

�pc�3=2
: �34�

Note that the point force for the corresponding penny-shaped crack problem is 2P0, used in Eq. (34). In the
problem of the penny-shaped crack, the electric displacement Dh is zero everywhere. Thus, the electric
boundary condition at the free surface of the half space problem is satis®ed by the penny-shaped crack
solution for electric displacement. In view of this, there is no need to correct the electric displacement
intensity factor. Thus, for the semicircular surface crack in a half space of piezoceramics with uniform
charge q0 applied on the crack surface, we have

KD � 2q0

��������
c=p

p
: �35�

Using the principle of superposition, the expression given by Eq. (35) is also valid for the problem, where
the charge is applied remotely (i.e., at a large distance from the crack). Such a boundary condition can be
replaced with an equivalent boundary condition in terms of the applied electric ®eld E1z . After the con-
stitutive relations Eq. (3) and Eq. (30) are used, the electric displacement intensity factor can be related to
the far electric ®eld as

KD � 2E1z vE

��������
c=p

p
; �36�

where

vE � e33 � 2e2
31c33 ÿ 4e31e33c13 � e2

33c12 � e2
33c11

c12c33 ÿ 2c2
13 � c11c33

: �37�

For PZT-4, vE � 1:15� 10ÿ8 C mV±1. The ®rst term represents the dielectric e�ect, while the second term
represents the piezoelectric coupling e�ects.

Fig. 4. Illustration of wedge e�ect due to indentation.
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5. A wedge model for indentation cracks

For unpoled isotropic and homogeneous materials, explicit formulas for the stress intensity factor of a
radial crack produced by a Vickers sharp indenter have been empirically derived by many researchers
(Chiang et al., 1982; Yo�e, 1982; Anstis et al., 1981). The stress intensity factor KI can be expressed in terms
of material constants, indentation load P, and induced crack length c, as (Anstis et al., 1981)

KI � 0:016
Y
H

� �1=2

Pcÿ3=2;

H � P sin�a=2�
2D2

;

�38�

where Y and H represent YoungÕs modulus and hardness, respectively, D is the half diagonal of the in-
dentation pyramid and a is the apex angle of the Vickers diamond indenter, which is normally 136°.

The plastic wedge induced by indentation prevents crack surfaces from closing after removal of the
indenter, and, thus, causes tensile residual stresses near the crack tip. This wedge action may be represented
by a pair of point forces P0 situated at the ``center'' �x � y � z � 0� of the crack. The magnitude of P0

depends on the indentation force and the electric ®eld.
Since the Vickers indentation formula given by Eq. (38) relates the stress intensity factor KI and the

crack length c that is observed on the free surface of the half space, the stress intensity factor KI should be
interpreted as the value at h � 0�or p�. This formula is assumed to be valid in the absence of electric ®elds.
Thus, for a given indentation force P, we assume that the point force P o

0 gives the same stress intensity
factor as the indentation force. From Eqs. (34) and (38), the stress intensity factor induced by a point force
P o

0 applied at the ``center'' of the crack is given by Eq. (34). A wedging force P o
0 is equivalent to P if the

corresponding KIÕs are equal. As a result, we have

0:016
Y
H

� �1=2

Pcÿ1:5
0 � j0

P o
0

�pc0�3=2
; �39�

where c0 is the indentation induced crack length in the absence of electric ®elds, and j0 � j�h � 0� � 1:2.
From Eq. (39), the equivalent wedging force in the absence of electric ®elds is established as

P o
0 �

0:089

j0

Y
H

� �1=2

P : �40�

It is assumed that the wedge is piezoelectric. For simplicity, we assume that the inelastic region can be
represented by a one-dimensional piezoelectric rod element. If a positive electric ®eld is applied, the rep-
resentative piezoelectric rod would elongate, and wedging force develops. In contrast, if a high negative
®eld is applied to the rod, 180° domain switching would take place since voltage on the crack surface is very
high and the length of the rod is very small.

It is not easy to predict when and how completely domain switching would occur in the wedge. A simple
empirical model is derived based on the following observations and assumptions:

(1) It is assumed that the domain switching for material in the wedge region under the indenter occurs
when negative electric ®elds are applied. The assumption is made based on the observation that the electric
®eld across the crack surfaces near the crack tip exceed the coercive ®eld.

(2) Based on the experimental observation (Lynch, 1996; Schaufele and Hardtl, 1996), it is assumed that
the magnitude of piezoelectric constant d33 after domain switching could reduce since 180° domain
switching might not be fully completed.
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(3) It is observed that under higher compressive stresses, the 180° domain switching could occur more
easily (Lynch, 1996). It is expected that the higher indentation load produces a greater compressive stress in
the rod (wedge). Based on limited experimental results, it is observed that piezoelectric constants after
domain switching may vary with di�erent states of stress. As a result, the greater the indentation load, the
smaller the reduction in the piezoelectric constant.

In light of the above observations and assumptions, the piezoelectric constant modi®ed by a reduction
factor, apiezod33, japiezoj6 1, is adopted.

Using the crack surface displacement and electric potential given by Eqs. (22) and (23) for the penny-
shaped crack problem together with the correction factor j0, the crack surface displacement and electric
potential at the ``center'' of the semicircular surface crack is obtained as

w�0; 0� � 2j0P0

p2c
f�b1 � b3D1�t11 � �b2 � b3D2�t21g � 2q0c

p
f�b1 � b3D1�t12 � �b2 � b3D2�t22g; �41�

and

/�0; 0� � 2j0P0

p2c
f�c1 � c3D1�t11 � �c2 � c3D2�t21g � 2q0c

p
f�c1 � c3D1�t12 � �c2 � c3D2�t22g; �42�

respectively, where P0 is the equivalent point wedging force applied at the ``center'' of the semicircular
crack. Elongation of the rod due to an electric ®eld applied to the rod is

DL � ÿapiezod33D/; �43�
where d33 is the original piezoelectric constant, apiezo is the reduction factor associated with the material
property change, and D/ is the electric potential di�erence given by Eq. (42). It is noted that the contri-
bution to D/ from wedging force is smaller than that from the applied charge, and, as an approximation,
only the second term in Eq. (42) is retained. Meanwhile, deformation in the rod due to an applied charge is
secondary and neglected. As a result, the change of crack opening displacement due to electric ®eld is equal
to elongation of the rod that is produced by the electric ®eld.

w�0; 0�jP0�P0;q0�q0;c�c ÿ w�0; 0�jP0�P o
0
;q0�0;c�c0

� DL: �44�

Substituting Eqs. (41) and (43) into the above equation and solving for P0, we have

P0 � P o
0

c
c0

� �
ÿ apiezokDc2q0; �45�

where

kD � p c1 � c3D1� �t12 � c2 � c3D2� �t22f gd33

j0 b1 � b2D1� �t11 � b2 � b3D2� �t21f g : �46�

In Eq. (45), the applied crack surface charge q0 can also be interpreted as a remotely applied charge that can
be represented by an applied electric ®eld Ez. In terms of the applied electric ®eld Ez, we can rewrite Eq. (45)
as

P0 � P o
0

c
c0

� �
ÿ apiezokEc2Ez; �47�

where

kE � kDvE; �48�
in which vE is given by Eq. (37).
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Once the wedging force P0 is determined by using Eq. (47), the stress intensity factor for the semicircular
crack is obtained from Eq. (34) as

KI � 2j�h�
�pc�3=2

P o
0

c
c0

� ��
ÿ apiezokEc2Ez

�
: �49�

For the indentation crack problem, the stress intensity factor KI is for h � 0°. Thus, j�0� � 1:2:

6. Discussion

The mechanical strain energy release rate proposed by Park and Sun (1995b) includes only mechanical
energy released as the crack extends. For Mode I loading, the mechanical strain energy release rate can be
obtained using IrwinÕs crack closure method (Irwin, 1962). For PZT-4, we have

GM
I � 1

2
�1:75� 10ÿ11K2

I � 2:21� 10ÿ2KIKD� �N mÿ1�; �50�
where KI is given by Eq. (49) and KD by Eq. (36). Using the crack lengths at E1z � 0 obtained from the
Vickers indentation tests, Sun and Park (1995) obtained the critical mechanical strain energy release rates
GM

I � 3.68 and 4.63 Nm±1 for indentation loads P � 9:8 N and 49 N, respectively. In terms of the critical
GM

I and a given indentation load, the relation between crack length and electric ®eld can be determined
iteratively using Eq. (50). The determination of piezoelectric constant reduction factor apiezo still remains a
challenging task. One approach is to choose two data points from each positive and negative electric ®eld to
determine this parameter.

For positive electric ®elds, we take apiezo � 0, because it is assumed that there is no domain switching,
and the wedge would elongate the same amount as the surrounding piezoelectric medium, and no addi-
tional wedging force due to the electrical ®eld would occur.

For the application of negative electric ®elds, it is assumed that the 180o domain switching would occur
in the wedge, and elongation of the wedge would thus result. It has been observed experimentally (Lynch,
1996) that stress could greatly a�ect domain switching. As a result, di�erent reduction factors associated
with indentation loads 9.8 and 49 N were selected to re¯ect the fact that greater indentation loads would

Fig. 5. Prediction of crack length for P � 9:8 N.

L.Z. Jiang, C.T. Sun / International Journal of Solids and Structures 38 (2001) 1903±1918 1915



produce a higher degree of completion of domain switching. Using the aforementioned approach, we
obtain apiezo � ÿ0:2 and ÿ0.8 for indentation forces P � 9:8 and 49 N, respectively. The negative sign
indicates the e�ect of 180° domain switching. Using these factors, the comparisons between simulation and
the experimental results are plotted in Figs. 5 and 6.

Finally, it is noted that a positive electric ®eld through coupling with the tensile residual stress at the
crack front would produce a higher driving force GM

I that would produce a greater crack growth. In
contrast, when a negative electric ®eld is applied, due to the wedging e�ect, tensile stresses at the crack front
increase and the crack would still grow to a certain amount.

7. Conclusion

An analytical solution for a penny-shaped crack in an in®nite piezoelectric body was derived using
Hankel integral transform, from which an approximate solution for indentation cracks was obtained. The
concept of a plastic wedge produced by indentation in conjunction with the mechanical strain energy re-
lease rate was found able to interpret the electric ®eld e�ects on indention crack growth. The signi®cance of
the model is its simplicity.
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